Comparison of restricted mean survival times between treatments based on a stratified Cox model
نویسنده
چکیده
Causal inference in survival analysis has been centered on treatment effect assessment with adjustment of covariates. The direct adjustment method is usually employed to find the survival function of a treatment. A Cox model that stratifies the cumulative hazard by treatment is an ideal choice for performing direct adjustment because the treatment effects are allowed to vary over time. A SAS macro was developed to implement comparison of direct adjusted survivals between treatments at a selected time point. The restricted mean survival time can be derived from a direct adjusted survival function. This statistic summarizes the survival outcome of a treatment. Comparison of restricted means provides assessment of treatment effect over a time interval. The first aim of this article was to provide an overview of the restricted mean survival time. The second aim was to introduce a SAS macro that computes the restricted mean survival times from direct adjusted survivals based on a stratified Cox model. Data preparation and macro invocation are illustrated in an analysis of survival data involving three types of stem cell transplants.
منابع مشابه
Identification of Factors Affecting Metastatic Gastric Cancer Patients’ Survival Using the Random Survival Forest and Comparison with Cox Regression Model
Background and Objectives: In survival analysis, using the Cox model to determine the effective factors requires the assumptions whose failure of leads to biased results. The aim of this paper was to determine the factors affecting the survival of metastatic gastric cancer patients using the non-parametric method of Randomized Survival Forest (RSF) model and to compare its result with the Cox m...
متن کاملEvaluation of risk factors of recurrence of hodgkin\'s lymphoma using random survival forest and comparison with cox regression model
Background: In many studies, Cox regression was used to assess the important factors that affect the survival of cancer patients based on demographic and clinical variables. The aim of this study was to determine the factors affecting the survival of patients with Hodgkin's lymphoma using the random survival forest (RSF) method and compare it with the Cox model. Methods: In this retrospective ...
متن کاملThe Effect of Time-dependent Prognostic Factors on Survival of Non-Small Cell Lung Cancer using Bayesian Extended Cox Model
Abstract Background: Lung cancer is one of the most common cancers around the world. The aim of this study was to use Extended Cox Model (ECM) with Bayesian approach to survey the behavior of potential time-varying prognostic factors of Non-small cell lung cancer. Materials and Methods: Survival status of all 190 patients diagnosed with Non-Small Cell lung cancer referring to hospitals in ...
متن کاملCovariates-dependent confidence intervals for the difference or ratio of two median survival times.
In this paper, we are concerned with the estimation of the discrepancy between two treatments when right-censored survival data are accompanied with covariates. Conditional confidence intervals given the available covariates are constructed for the difference between or ratio of two median survival times under the unstratified and stratified Cox proportional hazards models, respectively. The pr...
متن کاملبرآورد خطای پیش بینی برای وضعیت بقا و کاربرد آن درتحلیل بقای بیماران مبتلا به سرطان روده بزرگ
Introduction: Colorectal cancer is one of the most widespread and killer among cancers. It is important that we predict what status people have in the future. The purpose of this study was comparison of the Cox model and Kaplan-Meier curve with IBS and also identifying the factors about predicted survival time of patients with colon cancer. Materials & Methods: This paper is related to colore...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bio-Algorithms and Med-Systems
دوره 9 شماره
صفحات -
تاریخ انتشار 2013